Back to Search
Start Over
Regularized continuous-time Markov Model via elastic net
- Source :
- Biometrics. 74:1045-1054
- Publication Year :
- 2018
- Publisher :
- Wiley, 2018.
-
Abstract
- Continuous-time Markov models are commonly used to analyze longitudinal transitions between multiple disease states in panel data, where participants' disease states are only observed at multiple time points, and the exact state paths between observations are unknown. However, when covariate effects are incorporated and allowed to vary for different transitions, the number of potential parameters to estimate can become large even when the number of covariates is moderate, and traditional maximum likelihood estimation and subset model selection procedures can easily become unstable due to overfitting. We propose a novel regularized continuous-time Markov model with the elastic net penalty, which is capable of simultaneous variable selection and estimation for large number of parameters. We derive an efficient coordinate descent algorithm to solve the penalized optimization problem, which is fully automatic and data driven. We further consider an extension where one of the states is death, and time of death is exactly known but the state path leading to death is unknown. The proposed method is extensively evaluated in a simulation study, and demonstrated in an application to real-world data on airflow limitation state transitions.
- Subjects :
- Statistics and Probability
Elastic net regularization
Optimization problem
General Immunology and Microbiology
Computer science
Applied Mathematics
Model selection
Feature selection
General Medicine
Overfitting
Markov model
01 natural sciences
General Biochemistry, Genetics and Molecular Biology
010104 statistics & probability
03 medical and health sciences
0302 clinical medicine
Covariate
030212 general & internal medicine
0101 mathematics
General Agricultural and Biological Sciences
Coordinate descent
Algorithm
Subjects
Details
- ISSN :
- 0006341X
- Volume :
- 74
- Database :
- OpenAIRE
- Journal :
- Biometrics
- Accession number :
- edsair.doi...........2761bab964f0e951a222b828fa7a5350