Back to Search Start Over

Intuitionistic fuzzy c-means clustering algorithm based on a novel weighted proximity measure and genetic algorithm

Authors :
Yi-ting Wang
Jian-qiang Wang
Lin Li
Wen-hui Hou
Peng-Fei Cheng
Source :
International Journal of Machine Learning and Cybernetics. 12:859-875
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

In the era of big data, the research on clustering technologies is a popular topic because they can discover the structure of complex data sets with minimal prior knowledge. Among the existing soft clustering technologies, as an extension of fuzzy c-means (FCM) algorithm, the intuitionistic FCM (IFCM) algorithm has been widely used due to its superiority in reducing the effects of outliers/noise and improving the clustering accuracy. In the existing IFCM algorithm, the measurement of proximity degree between a pair of objects and the determination of parameters are two critical problems, which have considerable effects on the clustering results. Therefore, we propose an improved IFCM clustering technique in this paper. Firstly, a novel weighted proximity measure, which aggregates weighted similarity and correlation measures, is proposed to evaluate not only the closeness degree but also the linear relationship between two objects. Subsequently, genetic algorithms are utilized for identifying the optimal parameters. Lastly, experiments on the proposed IFCM technique are conducted on synthetic and UCI data sets. Comparisons with other approaches in cluster evaluation indexes indicate the effectiveness and superiority of our method.

Details

ISSN :
1868808X and 18688071
Volume :
12
Database :
OpenAIRE
Journal :
International Journal of Machine Learning and Cybernetics
Accession number :
edsair.doi...........26a428c7e0807f3beabdc9989e79856a
Full Text :
https://doi.org/10.1007/s13042-020-01206-3