Back to Search
Start Over
Cohomological Dimension in Pro-p Towers
- Source :
- International Mathematics Research Notices. 2021:5757-5765
- Publication Year :
- 2019
- Publisher :
- Oxford University Press (OUP), 2019.
-
Abstract
- We give a proof without use of perfectoid geometry of the following vanishing theorem of Scholze: for $X\subset \mathbb{P}^n$ a projective scheme of dimension $d$ over an algebraically closed characteristic $0$ field, and $X_r$ the inverse image of $X$ via the map that assigns $(x_0^{p^r}: \dots : x_n^{p^r})$ to the homogeneous coordinates $(x_0:\ldots :x_n)$, the induced map $H^i(X, {{\mathbb{F}}}_p)\to H^i(X_r, {{\mathbb{F}}}_p)$ on étale cohomology dies for $i>d$ and $r$ large. Our proof holds in characteristic $\ell \neq p$ as well.
Details
- ISSN :
- 16870247 and 10737928
- Volume :
- 2021
- Database :
- OpenAIRE
- Journal :
- International Mathematics Research Notices
- Accession number :
- edsair.doi...........267f7b966aa6cbdb23156d8f45b165e8
- Full Text :
- https://doi.org/10.1093/imrn/rnz025