Back to Search Start Over

Reducing Errors in Temperature and Salinity in an Ocean Model Forced by Restoring Boundary Conditions*

Authors :
Edward S. Sarachik
Igor Kamenkovich
Source :
Journal of Physical Oceanography. 34:1856-1869
Publication Year :
2004
Publisher :
American Meteorological Society, 2004.

Abstract

Restoring boundary conditions, wherein the temperature and salinity are restored to surface target fields of temperature and salinity, are traditionally used for studies of the ocean circulation in ocean general circulation models. The canonical problem with these boundary conditions is that, when the target fields are chosen as the observed fields, accurate simulation of the surface fields of temperature and salinity would imply that the surface fluxes and therefore the ocean heat transports approach zero, a clearly unrealistic situation. It is clear that the target fields cannot be chosen as the observed fields. A simple but effective method of modifying conventional restoring boundary conditions is introduced, designed to keep the calculated values of surface temperature and salinity as close to observations as possible. The technique involves calculating the optimal target fields in the restoring boundary conditions by an iterative procedure. The method accounts for oceanic processes, such as advection and eddy mixing in the derivation of the new boundary conditions. A reduced version of this method is introduced that produces comparable results but offers greater simplicity in implementation. The simplicity of the method is particularly attractive in idealized studies, which often employ restoring surface boundary conditions. The success of the new method is, however, limited by several factors that cannot be easily compensated by the adjustment of the target profiles. These factors include inaccurate model dynamics, errors in the observations, and the too-simplified form of restoring surface boundary conditions themselves. The application of the method in this study with a coarse-resolution model leads to considerable improvements of the simulation of sea surface temperature (SST) and sea surface salinity (SSS). Both amplitude and phase of the annual cycle in SST greatly improve. The resulting magnitudes of surface heat and freshwater fluxes increase on average, and the meridional heat transport gets stronger. However, the fluxes in some regions remain unrealistic, notably the too-strong freshwater forcing of the western boundary currents in the Northern Hemisphere. Southern Ocean cooling and freshening are also likely to be too strong. The subsurface values of temperature improve greatly, proving that a large part of errors in the subsurface temperature distribution in our model can be corrected by reducing errors at the surface. In contrast, the reduction of errors in surface salinity fails to improve uniformly the simulated subsurface salinity values.

Details

ISSN :
15200485 and 00223670
Volume :
34
Database :
OpenAIRE
Journal :
Journal of Physical Oceanography
Accession number :
edsair.doi...........254fb3090c6dd0e097a422c307d06be8
Full Text :
https://doi.org/10.1175/1520-0485(2004)034<1856:reitas>2.0.co;2