Back to Search Start Over

First eigenvalue of a Jacobi operator of hypersurfaces with a constant scalar curvature

Authors :
Qing-Ming Cheng
Source :
Proceedings of the American Mathematical Society. 136:3309-3318
Publication Year :
2008
Publisher :
American Mathematical Society (AMS), 2008.

Abstract

Let M M be an n n -dimensional compact hypersurface with constant scalar curvature n ( n − 1 ) r n(n-1)r , r > 1 r> 1 , in a unit sphere S n + 1 ( 1 ) S^{n+1}(1) . We know that such hypersurfaces can be characterized as critical points for a variational problem of the integral ∫ M H d M \int _MHdM of the mean curvature H H . In this paper, we first study the eigenvalue of the Jacobi operator J s J_s of M M . We derive an optimal upper bound for the first eigenvalue of J s J_s , and this bound is attained if and only if M M is a totally umbilical and non-totally geodesic hypersurface or M M is a Riemannian product S m ( c ) × S n − m ( 1 − c 2 ) S^m(c)\times S^{n-m}(\sqrt {1-c^2}) , 1 ≤ m ≤ n − 1 1\leq m\leq n-1 .

Details

ISSN :
10886826 and 00029939
Volume :
136
Database :
OpenAIRE
Journal :
Proceedings of the American Mathematical Society
Accession number :
edsair.doi...........2487a24e1fcd7db799ce25be48b9dfa2
Full Text :
https://doi.org/10.1090/s0002-9939-08-09304-0