Back to Search
Start Over
First eigenvalue of a Jacobi operator of hypersurfaces with a constant scalar curvature
- Source :
- Proceedings of the American Mathematical Society. 136:3309-3318
- Publication Year :
- 2008
- Publisher :
- American Mathematical Society (AMS), 2008.
-
Abstract
- Let M M be an n n -dimensional compact hypersurface with constant scalar curvature n ( n − 1 ) r n(n-1)r , r > 1 r> 1 , in a unit sphere S n + 1 ( 1 ) S^{n+1}(1) . We know that such hypersurfaces can be characterized as critical points for a variational problem of the integral ∫ M H d M \int _MHdM of the mean curvature H H . In this paper, we first study the eigenvalue of the Jacobi operator J s J_s of M M . We derive an optimal upper bound for the first eigenvalue of J s J_s , and this bound is attained if and only if M M is a totally umbilical and non-totally geodesic hypersurface or M M is a Riemannian product S m ( c ) × S n − m ( 1 − c 2 ) S^m(c)\times S^{n-m}(\sqrt {1-c^2}) , 1 ≤ m ≤ n − 1 1\leq m\leq n-1 .
Details
- ISSN :
- 10886826 and 00029939
- Volume :
- 136
- Database :
- OpenAIRE
- Journal :
- Proceedings of the American Mathematical Society
- Accession number :
- edsair.doi...........2487a24e1fcd7db799ce25be48b9dfa2
- Full Text :
- https://doi.org/10.1090/s0002-9939-08-09304-0