Back to Search Start Over

Computational Analyses of Docosahexaenoic Acid (DHA, C22:6, n-3) with Alzheimer’s Disease-Causing Amyloid Peptide Aβ1-42 Reassures Its Therapeutic Utility

Authors :
Kentaro Matsuzaki
Michio Hashimoto
Shahdat Hossain
Abdullah Al Mamun
Hiroyuki Arai
Osamu Shido
Source :
Advances in Alzheimer's Disease. :73-86
Publication Year :
2016
Publisher :
Scientific Research Publishing, Inc., 2016.

Abstract

The accumulation of amyloid β peptide1-42 (Aβ1-42) masses in the brains of Alzheimer’s Disease (AD) patients is associated with neuronal loss and memory deficits. We have previously reported that oral administration of docosahexaenoic acid (DHA, C22:6, n-3) significantly decreases Aβ burden in the brains of AD model rats and that direct in vitro incubation of DHA with Aβ1-42 curbs the progression of amyloid fibrillation. In the present in silico study, we investigated whether DHA computationally binds with amyloid peptides. The NMR solution structures of Aβ1-42 were downloaded from the Protein Data Bank (PDB IDs: 1Z0Q and 2BEG). The binding of DHA to Aβ peptides was assessed by molecular docking using both a flexible and rigid docking system. Thioflavin T (ThT) was used as positive control. The chemical structures of ThT and DHA were modeled and converted to the PDB format using PRODRUG. Drug-like properties of DHA were evaluated by ADME (Absorption, Distribution, Metabolism, and Excretion). DHA was found to successfully dock with Aβ1-42. Computational analyses of the binding of DHA to Aβ1-42, as evaluated by docking studies, further corroborated the inhibitory effect of DHA on in vitro Aβ1-42 fibrillogenesis and might explain the in vivo reduction of amyloid burden observed in the brains of DHA-administered AD model rats demonstrated in our previous study. These computational data suggest the potential utility of DHA as a preventive medication in Aβ-induced neurodegenerative diseases, including AD.

Details

ISSN :
21692467 and 21692459
Database :
OpenAIRE
Journal :
Advances in Alzheimer's Disease
Accession number :
edsair.doi...........2409e501294564201e8aa12f32e49dc0
Full Text :
https://doi.org/10.4236/aad.2016.52006