Back to Search
Start Over
Structural phase transition in monolayer MoTe2 driven by electrostatic doping
- Source :
- Nature. 550:487-491
- Publication Year :
- 2017
- Publisher :
- Springer Science and Business Media LLC, 2017.
-
Abstract
- Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.
- Subjects :
- Phase transition
Multidisciplinary
Materials science
Hexagonal phase
Ferroics
02 engineering and technology
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
Crystal
symbols.namesake
Crystallography
Chemical physics
Phase (matter)
Monolayer
symbols
0210 nano-technology
Raman spectroscopy
Monoclinic crystal system
Subjects
Details
- ISSN :
- 14764687 and 00280836
- Volume :
- 550
- Database :
- OpenAIRE
- Journal :
- Nature
- Accession number :
- edsair.doi...........23fb908e0c2960f8cf9a1b1f1133cc62