Back to Search Start Over

Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H 2 by Calcium Trimesate

Authors :
Douglas M. Franz
Shi-Qiang Wang
Shoushun Chen
Victor V. Terskikh
Amrit Kumar
Soumya Mukherjee
Brian Space
Yining Huang
Michael J. Zaworotko
Mansheng Chen
Andrey A. Bezrukov
Matthew Mostrom
Source :
Angewandte Chemie International Edition. 59:16188-16194
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

The high energy footprint of commodity gas purification and increasing demand for gases require new approaches to gas separation. Kinetic separation of gas mixtures through molecular sieving can enable separation by molecular size or shape exclusion. Physisorbents must exhibit the right pore diameter to enable separation, but the 0.3-0.4 nm range relevant to small gas molecules is hard to control. Herein, dehydration of the ultramicroporous metal-organic framework Ca-trimesate, Ca(HBTC)⋅H2 O (H3 BTC=trimesic acid), bnn-1-Ca-H2 O, affords a narrow pore variant, Ca(HBTC), bnn-1-Ca. Whereas bnn-1-Ca-H2 O (pore diameter 0.34 nm) exhibits ultra-high CO2 /N2 , CO2 /CH4 , and C2 H2 /C2 H4 binary selectivity, bnn-1-Ca (pore diameter 0.31 nm) offers ideal selectivity for H2 /CO2 and H2 /N2 under cryogenic conditions. Ca-trimesate, the first physisorbent to exhibit H2 sieving under cryogenic conditions, could be a prototype for a general approach to exert precise control over pore diameter in physisorbents.

Details

ISSN :
15213773 and 14337851
Volume :
59
Database :
OpenAIRE
Journal :
Angewandte Chemie International Edition
Accession number :
edsair.doi...........235cf045756441516d818280ee76ca39