Back to Search
Start Over
Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H 2 by Calcium Trimesate
- Source :
- Angewandte Chemie International Edition. 59:16188-16194
- Publication Year :
- 2020
- Publisher :
- Wiley, 2020.
-
Abstract
- The high energy footprint of commodity gas purification and increasing demand for gases require new approaches to gas separation. Kinetic separation of gas mixtures through molecular sieving can enable separation by molecular size or shape exclusion. Physisorbents must exhibit the right pore diameter to enable separation, but the 0.3-0.4 nm range relevant to small gas molecules is hard to control. Herein, dehydration of the ultramicroporous metal-organic framework Ca-trimesate, Ca(HBTC)⋅H2 O (H3 BTC=trimesic acid), bnn-1-Ca-H2 O, affords a narrow pore variant, Ca(HBTC), bnn-1-Ca. Whereas bnn-1-Ca-H2 O (pore diameter 0.34 nm) exhibits ultra-high CO2 /N2 , CO2 /CH4 , and C2 H2 /C2 H4 binary selectivity, bnn-1-Ca (pore diameter 0.31 nm) offers ideal selectivity for H2 /CO2 and H2 /N2 under cryogenic conditions. Ca-trimesate, the first physisorbent to exhibit H2 sieving under cryogenic conditions, could be a prototype for a general approach to exert precise control over pore diameter in physisorbents.
- Subjects :
- Materials science
Hydrogen
010405 organic chemistry
chemistry.chemical_element
General Chemistry
010402 general chemistry
Crystal engineering
01 natural sciences
Catalysis
0104 chemical sciences
chemistry.chemical_compound
Physisorption
Chemical engineering
chemistry
Molecule
Gas separation
Trimesic acid
Selectivity
Porous medium
Subjects
Details
- ISSN :
- 15213773 and 14337851
- Volume :
- 59
- Database :
- OpenAIRE
- Journal :
- Angewandte Chemie International Edition
- Accession number :
- edsair.doi...........235cf045756441516d818280ee76ca39