Back to Search Start Over

3D Flexible Refinement: Structure and Motion of Flexible Proteins from Cryo-EM

Authors :
David J. Fleet
Ali Punjani
Publication Year :
2021
Publisher :
Cold Spring Harbor Laboratory, 2021.

Abstract

Single particle cryo-EM excels in determining static structures of biological macromolecules such as proteins. However, many proteins are dynamic, with their motion inherently linked to their function. Recovering the continuous motion and detailed 3D structure of flexible proteins from cryo-EM data has remained an open challenge. We introduce3D Flexible Refinement(3DFlex), a motion-based deep neural network model of continuous heterogeneity. 3DFlex directly exploits the knowledge that conformational variability of a protein is often the result of physical processes that transport density over space and tend to conserve mass and preserve local geometry. From 2D image data, the 3DFlex model jointly learns a single canonical 3D map, latent coordinate vectors that specify positions on the protein’s conformational landscape, and a flow generator that, given a latent position as input, outputs a 3D deformation field. This deformation field convects the canonical map into appropriate conformations to explain experimental images. Applied to experimental data, 3DFlex learns non-rigid motion spanning several orders of magnitude while preserving high-resolution details of secondary structure elements. Further, 3DFlex resolves canonical maps that are improved relative to conventional refinement methods because particle images contribute to the maps coherently regardless of the conformation of the protein in the image. Together, the ability to obtain insight into motion in macromolecules, as well as the ability to resolve features that are usually lost in cryo-EM of flexible specimens, will provide new insight and allow new avenues of investigation into biomolecular structure and function.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........22ae94e1b00c4b46244cfeef6f6b1485
Full Text :
https://doi.org/10.1101/2021.04.22.440893