Back to Search Start Over

First-Order Logic Theorem Proving and Model Building via Approximation and Instantiation

Authors :
Christoph Weidenbach
Andreas Teucke
Source :
Frontiers of Combining Systems ISBN: 9783319242453, FroCos
Publication Year :
2015
Publisher :
Springer International Publishing, 2015.

Abstract

In this paper we consider first-order logic theorem proving and model building via approximation and instantiation. Given a clause set we propose its approximation into a simplified clause set where satisfiability is decidable. The approximation extends the signature and preserves unsatisfiability: if the simplified clause set is satisfiable in some model, so is the original clause set in the same model interpreted in the original signature. A refutation generated by a decision procedure on the simplified clause set can then either be lifted to a refutation in the original clause set, or it guides a refinement excluding the previously found unliftable refutation. This way the approach is refutationally complete. We do not step-wise lift refutations but lift conflicting cores, finite unsatisfiable clause sets representing at least one refutation. The approach is dual to many existing approaches in the literature.

Details

ISBN :
978-3-319-24245-3
ISBNs :
9783319242453
Database :
OpenAIRE
Journal :
Frontiers of Combining Systems ISBN: 9783319242453, FroCos
Accession number :
edsair.doi...........226aadbddf8c67038b834c856d9c1aca
Full Text :
https://doi.org/10.1007/978-3-319-24246-0_6