Back to Search Start Over

Connection times in large ad hoc mobile networks

Authors :
Döring, Hanna
Faraud, Gabriel
König, Wolfgang
Publication Year :
2013
Publisher :
Weierstrass Institute, 2013.

Abstract

We study connectivity properties in a probabilistic model for a large mobile ad-hoc network. We consider a large number of participants of the system moving randomly, independently and identically distributed in a large domain, with a space-dependent population density of finite, positive order and with a fixed time horizon. Messages are instantly transmitted according to a relay principle, i.e., they are iteratedly forwarded from participant to participant over distances $leq 2R$, with $2R$ the communication radius, until they reach the recipient. In mathematical terms, this is a dynamic continuum percolation model. We consider the connection time of two sample participants, the amount of time over which these two are connected with each other. In the above thermodynamic limit, we find that the connectivity induced by the system can be described in terms of the counterplay of a local, random, and a global, deterministic mechanism, and we give a formula for the limiting behaviour. A prime example of the movement schemes that we consider is the well-known random waypoint model (RWP). Here we describe the decay rate, in the limit of large time horizons, of the probability that the portion of the connection time is less than the expectation.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........2259df979819eb32136d4ccd52f37adb
Full Text :
https://doi.org/10.20347/wias.preprint.1811