Back to Search Start Over

Decomposition of Ionic Liquids at Lithium Interfaces. 2. Gas Phase Computations

Authors :
Justin B. Haskins
John W. Lawson
Charles W. Bauschlicher
Handan Yildirim
Source :
The Journal of Physical Chemistry C. 121:28235-28248
Publication Year :
2017
Publisher :
American Chemical Society (ACS), 2017.

Abstract

This is Part 2 of a two part series of papers on decomposition of two ionic liquids at lithium metal interfaces. In Part 1 of this series, ab initio molecular dynamics (AIMD) simulations were used to examine the stability and decomposition of two ionic liquids (ILs), [pyr14][TFSI] and [EMIM][BF4], on Li metal anodes. Here in Part 2, density functional calculations of ions and ion pairs in the gas phase are coupled with model electrode surface effects to provide an in-depth analysis of the results obtained from more computationally expensive AIMD simulations of electrolytes on the Li surface in Part 1. The gas phase approach is used to examine the cathodic and anodic stability, the electrochemical decomposition thermodynamics, and the kinetic barriers to the electrochemical decomposition of the ions on a Li surface. The states of the ILs are shown to mix with those of the Li surface, which leads to the reduction of the cations by one electron and a partial reduction of the anions. Upon reduction, many ion ...

Details

ISSN :
19327455 and 19327447
Volume :
121
Database :
OpenAIRE
Journal :
The Journal of Physical Chemistry C
Accession number :
edsair.doi...........221928222ff7147878d8940af5ded0e7