Back to Search
Start Over
Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes
- Source :
- Journal of Geophysical Research. 110
- Publication Year :
- 2005
- Publisher :
- American Geophysical Union (AGU), 2005.
-
Abstract
- [1] An Aerodyne aerosol mass spectrometer (AMS) was deployed at the Pittsburgh Environmental Protection Agency Supersite from 7 to 22 September 2002 as part of the Pittsburgh Air Quality Study (PAQS). The main objectives of this deployment were to characterize the concentrations, size distributions, and temporal variations of nonrefractory (NR) chemical species in submicron particles (approximately PM1) and to further develop and evaluate the AMS. Reasonably good agreement was observed on particle concentrations, composition, and size distributions between the AMS data and measurements from collocated instruments (given the difference between the PM1 and PM2.5 size cuts), including TEOM, semicontinuous sulfate, 2-hour- and 24-hour-averaged organic carbon, SMPS, 4-hour-averaged ammonium, and micro-orifice uniform deposit impactor. Total NR-PM1 mass concentration in Pittsburgh accumulates over periods of several days punctuated with rapid cleaning due to rain or air mass changes. Sulfate and organics are the major NR-PM1 components while the concentrations of nitrate and chloride are generally low. Significant amounts of ammonium, which most of the time are consistent with sulfate present as ammonium sulfate, are also present in particles. However, there are periods when the aerosols are relatively acidic and more than 50% of sulfate is estimated to be in the form of ammonium bisulfate. No major enhancement of the organic concentration is observed during these acidic periods, which suggests that acid-catalyzed SOA formation was not an important process during this study. Size distributions of particulate sulfate, ammonium, organics, and nitrate vary on timescales of hours to days, showing unimodal, bimodal and even trimodal characteristics. The accumulation mode (peaking around 350–600 nm in vacuum aerodynamic diameter for the mass distributions) and the ultrafine mode (
- Subjects :
- Ammonium bisulfate
Atmospheric Science
Ammonium sulfate
Ecology
Paleontology
Soil Science
Mineralogy
Forestry
Aquatic Science
Particulates
Oceanography
Aerosol
chemistry.chemical_compound
Geophysics
chemistry
Space and Planetary Science
Geochemistry and Petrology
Environmental chemistry
Ultrafine particle
Earth and Planetary Sciences (miscellaneous)
Mass concentration (chemistry)
Ammonium
Sulfate
Earth-Surface Processes
Water Science and Technology
Subjects
Details
- ISSN :
- 01480227
- Volume :
- 110
- Database :
- OpenAIRE
- Journal :
- Journal of Geophysical Research
- Accession number :
- edsair.doi...........21d7be9577ec50a3a38a96a2883d341e