Back to Search
Start Over
Uniform decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping
- Source :
- Nonlinear Differential Equations and Applications NoDEA. 15:91-113
- Publication Year :
- 2008
- Publisher :
- Springer Science and Business Media LLC, 2008.
-
Abstract
- The following coupled damped Klein-Gordon-Schrodinger equations are considered $$i\psi_{t} +\triangle\psi + i\alpha|\psi|^{2}\psi = \phi\psi\,\,{\rm in}\,\,\Omega \times (0,\infty), (\alpha > 0)$$ $$\phi_{tt} - \triangle\phi + a(x)\phi_{t} = |\psi|^{2}{\mathcal{X}}_{\omega}\,{\rm in}\,\Omega \times (0,\infty),$$ where Ω is a bounded domain of \({\mathbb{R}}^{n}, n \leq 3\), with smooth boundary Γ and ω is a neibourhood of \(\partial\Omega\). Here \({\mathcal{X}}_{\omega}\) represents the characteristic function of ω. Assuming that \(a \in W^{1,\infty}(\Omega)\) is a nonnegative function such that \(a(x) \geq a_{0} > 0\) a. e. in ω, polynomial decay rate is proved for every regular solution of the above system. Our result generalizes substantially the previous results given by the authors in the reference [CDC].
Details
- ISSN :
- 14209004 and 10219722
- Volume :
- 15
- Database :
- OpenAIRE
- Journal :
- Nonlinear Differential Equations and Applications NoDEA
- Accession number :
- edsair.doi...........21b1a91991b9e65f2f90dd6574208fcb
- Full Text :
- https://doi.org/10.1007/s00030-007-6025-9