Back to Search
Start Over
Enhancing Light Emission of Nanostructured Vertical Light-Emitting Diodes by Minimizing Total Internal Reflection
- Source :
- Advanced Functional Materials. 22:632-639
- Publication Year :
- 2011
- Publisher :
- Wiley, 2011.
-
Abstract
- Nanostructured vertical light-emitting diodes (V-LEDs) with a very dense forest of vertically aligned ZnO nanowires on the surface of N-face n-type GaN are reported with a dramatic improvement in light extraction efficiency (∼3.0×). The structural transformation (i.e., dissociation of the surface nitrogen atoms) at the nanolevel by the UV radiation and Ozone treatments contributes significantly to the initial nucleation for the nanowires growth due to the interdiffusion of Zn into GaN, evident by the scanning photoemission microscopy (SPEM), high-resolution transmission electron microscopy (HR-TEM), and ultraviolet photoelectron spectroscopy (UPS) measurements. This enables the growth of densely aligned ZnO nanowires on N-face n-type GaN. This approach shows an extreme enhancement in light extraction efficiency (>2.8×) compared to flat V-LEDs, in good agreement with the simulation expectations (∼3.01×) obtained from 3D finite-difference time-domain (FDTD) tools, explained by the wave-guiding effect. The further increase (∼30%) in light extraction efficiency is also observed by optimized design of nanogeometry (i.e., MgO layer on ZnO nanorods).
- Subjects :
- Total internal reflection
Materials science
business.industry
Nucleation
Nanowire
Condensed Matter Physics
Electronic, Optical and Magnetic Materials
law.invention
Biomaterials
Transmission electron microscopy
law
Electrochemistry
Optoelectronics
Nanorod
Light emission
business
Light-emitting diode
Ultraviolet photoelectron spectroscopy
Subjects
Details
- ISSN :
- 1616301X
- Volume :
- 22
- Database :
- OpenAIRE
- Journal :
- Advanced Functional Materials
- Accession number :
- edsair.doi...........213616410c9501c76216899e806b68cf
- Full Text :
- https://doi.org/10.1002/adfm.201101987