Back to Search Start Over

Facile fabrication of a jarosite ultrathin KFe3(SO4)2(OH)6@rGO nanosheet hybrid composite with pseudocapacitive contribution as a robust anode for lithium-ion batteries

Authors :
Yun Zhang
Xianming Liu
Jianguo Zhao
Wendi Tian
Qiao Xiaoguang
Jinke Shen
Hao Wu
Naiteng Wu
Tao Sun
Source :
Inorganic Chemistry Frontiers. 6:192-198
Publication Year :
2019
Publisher :
Royal Society of Chemistry (RSC), 2019.

Abstract

The search for anode materials with high performance and low cost for lithium-ion batteries (LIBs) remains challenging. Herein, Earth-abundant and acid-resistant jarosite ultrathin KFe3(SO4)2(OH)6@rGO (KFN@rGO) nanosheets were fabricated via a facile and scalable hydrothermal route without any surfactant. When serving as an anode material for LIBs, KFN@rGO delivers excellent lithium storage performances, including high reversible capacity (913 mA h g−1 at 20 mA g−1) and robust cycling life (545 mA h g−1 at the end of 1000 cycles at 500 mA g−1). Moreover, the pseudocapacitive contribution is as high as 62.7% at 1 mV s−1 as revealed by cyclic voltammetry. The robust cycling stability can be attributed to the hybrid structure of ultrathin KFe3(SO4)2(OH)6 nanosheets and flexible rGO which not only enhances the conductivity and structural integrity, but also induces the pseudocapacitive effect during the cycles. This work may provide an effective route to improve the electrochemical performances of other jarosite minerals through the introduction of the pseudocapacitive contribution.

Details

ISSN :
20521553
Volume :
6
Database :
OpenAIRE
Journal :
Inorganic Chemistry Frontiers
Accession number :
edsair.doi...........211c340e4a087d13d519505ca2932283
Full Text :
https://doi.org/10.1039/c8qi01165f