Back to Search
Start Over
Quantum Monte Carlo study of the cooperative binding of NO2 to fragment models of carbon nanotubes
- Source :
- Chemical Physics Letters. 466:170-175
- Publication Year :
- 2008
- Publisher :
- Elsevier BV, 2008.
-
Abstract
- Previous calculations on model systems for the cooperative binding of two NO2 molecules to carbon nanotubes using density functional theory and second order Moller–Plesset perturbation theory gave results differing by 30 kcal/mol. Quantum Monte Carlo calculations are performed to study the role of electronic correlations in these systems and resolve the discrepancy between these previous calculations. Compared to QMC binding energies, MP2 and LDA are shown to overbind, while B3LYP and BPW91 underbind. PW91 gives the best agreement with QMC with a binding energy differing by only 3 kcal/mol. Basis set effects are also shown to be important.
- Subjects :
- Chemistry
Quantum Monte Carlo
Binding energy
General Physics and Astronomy
Cooperative binding
Carbon nanotube
Molecular physics
law.invention
law
Quantum mechanics
Physics::Atomic and Molecular Clusters
Dynamic Monte Carlo method
Density functional theory
Physics::Chemical Physics
Physical and Theoretical Chemistry
Perturbation theory
Basis set
Subjects
Details
- ISSN :
- 00092614
- Volume :
- 466
- Database :
- OpenAIRE
- Journal :
- Chemical Physics Letters
- Accession number :
- edsair.doi...........20f4c2f425d20a96408d5e0e6534af77