Back to Search Start Over

Microenvironment characteristics and early regeneration after the 2018 Spring Creek Wildfire and post-fire logging in Colorado, USA

Authors :
Jesse T. Wooten
Camille S. Stevens-Rumann
Zoe H. Schapira
Monique E. Rocca
Source :
Fire Ecology. 18
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

Background Wildfires are increasing in size and severity in forests of the western USA, driven by climate change and land management practices during the 20th century. Altered fire regimes have resulted in a greater need for knowledge on best practices for managing burned landscapes, especially in instances where a return to a previous forested ecosystem is desired. We examined a large wildfire from 2018 in southern Colorado to understand how fire severity and post-fire logging influenced stand structure, fuels, vegetation, and soil microsite conditions. Results Two years post-fire and 1 year post logging, there was no difference in understory vegetation response. Logged plots demonstrated lower daily average temperature and minimum soil moisture and higher fuel loading across most fuel size classes relative to unlogged plots, which also corresponded with a loss of dead standing wood and little to no canopy cover. Early post-fire conifer regeneration was low across all plots, but lower soil moisture and higher soil temperature negatively impacted the density of regeneration. Conclusions Successful tree regeneration is mediated by multiple factors from the microsite to landscape scale. Here, we demonstrate the importance of those microsite conditions such as soil moisture and temperature in predicting conifer tree establishment in the early post-fire period. Careful consideration of soil impacts and the associated changes to forest conditions should be taken when conducting post-fire logging to prevent detrimental effects on microsite conditions and forest recovery.

Details

ISSN :
19339747
Volume :
18
Database :
OpenAIRE
Journal :
Fire Ecology
Accession number :
edsair.doi...........207b38b045df0950bed749f93752c69b
Full Text :
https://doi.org/10.1186/s42408-022-00133-8