Back to Search
Start Over
Regulation of the Ca2+channel α2δ-1 subunit expression by epidermal growth factor via the ERK/ELK-1 signaling pathway
- Source :
- American Journal of Physiology-Endocrinology and Metabolism. 319:E232-E244
- Publication Year :
- 2020
- Publisher :
- American Physiological Society, 2020.
-
Abstract
- Voltage-gated Ca2+(CaV) channels are expressed in endocrine cells where they contribute to hormone secretion. Diverse chemical messengers, including epidermal growth factor (EGF), are known to affect the expression of CaVchannels. Previous studies have shown that EGF increases Ca2+currents in GH3 pituitary cells by increasing the number of high voltage-activated (HVA) CaVchannels at the cell membrane, which results in enhanced prolactin (PRL) secretion. However, little is known regarding the mechanisms underlying this regulation. Here, we show that EGF actually increases the expression of the CaVα2δ-1 subunit, a key molecular component of HVA channels. The analysis of the gene promoter encoding CaVα2δ-1 ( CACNA2D1) revealed binding sites for transcription factors activated by the Ras/Raf/MEK/ERK signaling cascade. Chromatin immunoprecipitation and site-directed mutagenesis showed that ELK-1 is crucial for the transcriptional regulation of CACNA2D1 in response to EGF. Furthermore, we found that EGF increases the membrane expression of CaVα2δ-1 and that ELK-1 overexpression increases HVA current density, whereas ELK-1 knockdown decreases the functional expression of the channels. Hormone release assays revealed that CaVα2δ-1 overexpression increases PRL secretion. These results suggest a mechanism for how EGF, by activating the Ras/Raf/MEK/ERK/ELK-1 pathway, may influence the expression of HVA channels and the secretory behavior of pituitary cells.
- Subjects :
- 0301 basic medicine
MAPK/ERK pathway
medicine.medical_specialty
Gene knockdown
Physiology
Chemistry
Endocrinology, Diabetes and Metabolism
Cell biology
03 medical and health sciences
030104 developmental biology
0302 clinical medicine
Endocrinology
Epidermal growth factor
Physiology (medical)
Internal medicine
medicine
Transcriptional regulation
Secretion
Signal transduction
Transcription factor
Chromatin immunoprecipitation
030217 neurology & neurosurgery
Subjects
Details
- ISSN :
- 15221555 and 01931849
- Volume :
- 319
- Database :
- OpenAIRE
- Journal :
- American Journal of Physiology-Endocrinology and Metabolism
- Accession number :
- edsair.doi...........206a12870a1673eddd86d0c00e199136