Back to Search
Start Over
Performance studies of textured race ball bearing
- Source :
- Industrial Lubrication and Tribology. 71:1116-1123
- Publication Year :
- 2019
- Publisher :
- Emerald, 2019.
-
Abstract
- Purpose The purpose of this paper is to develop an energy-efficient and dynamically improved thrust ball bearing using textured race. A texture has been used on the stationary race of the test bearing to conduct the long-duration experiment for exploring its tribological and vibrational behaviours under starved lubricating condition using micro size MoS2 blended grease. The performance behaviours of the textured race bearing have been compared with conventional bearing (i.e. having both races without textures) under the identical operating conditions for demonstrating the advantages of textured race. Design/methodology/approach Texture was created on stationary race of the test ball bearing (51308) using nano-second pulsed Nd: YAG laser. Performance parameters (frictional torque, temperature rise and vibrations) of textured ball bearings were measured under severe starved lubricating conditions for understanding the critical role of texture in the long duration of the test. S-type load cell and miniature accelerometer were used for measuring the frictional torque and vibration, respectively. Bulk temperature at stationary races (at the back side) of test bearings was measured in operating conditions using a non-contact infrared thermometer. Findings Significant reduction in frictional torque and decrease in amplitude of vibration with textured ball bearing were found even under the severe starved lubricating condition in comparison to conventional bearing. Originality/value There is dearth of research pertaining to the performance behaviours of ball bearings using textures on the races. Therefore, an attempt has been made in this study to explore the tribo-dynamic performance behaviours of a thrust ball bearing using a texture on its stationary race under severe starved lubricating condition for the longer duration of the test.
Details
- ISSN :
- 00368792
- Volume :
- 71
- Database :
- OpenAIRE
- Journal :
- Industrial Lubrication and Tribology
- Accession number :
- edsair.doi...........1f7e02693a60ab15c309a921435e96c2