Back to Search Start Over

Instability in boundary layer between the North Equatorial Current and underlying zonal jets based on mooring observations

Authors :
Qingye Wang
Shijian Hu
Fujun Wang
Dunxin Hu
Linlin Zhang
Junqiao Feng
Source :
Journal of Oceanology and Limnology. 38:1368-1381
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Instability/stability in the North Equatorial Current (NEC) basin is studied based on data obtained from nine moorings deployed at 8.5°N, 10.5°N, 11.0°N, 12.5°N, 13.0°N, 15.0°N, 15.5°N, 17.5°N, and 18.0°N along 130.0°E during cruises in 2015–2017. In low latitudes, the Coriolis parameter and stratification ratio play important roles in NEC stability, whereas velocity shear and the layer depth ratio are important for NEC stability in high latitudes. Beneath the westward NEC, eastward zonal jets occur intermittently centered around 8.5°N, 12.5°N, and 17.5°N along 130.0°E. Similar to the NEC, the main body of these zonal jets also deepens with latitude. In the boundary layer comprising the bottom NEC and upper zonal jets, the growth rate of the NEC is attributed not only to velocity shear but also to zonal jet velocity based on the longwave assumption. Based on the shortwave assumption, the growth rate is proportional to zonal jet velocity but has no relationship with velocity shear. Climatologically, the growth rate in the boundary layer is not zero at 8.5°N, 12.5°N, and 13.0°N, where the velocity shear and zonal jets are larger than at other stations. The instability also occurs at the time node when the zonal jets are strong enough, although the mean zonal jets may disappear at this station.

Details

ISSN :
25233521 and 20965508
Volume :
38
Database :
OpenAIRE
Journal :
Journal of Oceanology and Limnology
Accession number :
edsair.doi...........1f4697b19bd4f32e548aa728e5f10f85
Full Text :
https://doi.org/10.1007/s00343-020-0015-8