Back to Search
Start Over
On the Right (Left) Invertible Completions for Operator Matrices
- Source :
- Integral Equations and Operator Theory. 67:79-93
- Publication Year :
- 2010
- Publisher :
- Springer Science and Business Media LLC, 2010.
-
Abstract
- Let \({\mathcal {H}_{1}}\) and \({\mathcal {H}_{2}}\) be separable Hilbert spaces, and let \({A \in \mathcal {B}(\mathcal {H}_{1}),\, B \in \mathcal {B}(\mathcal {H}_{2})}\) and \({C \in \mathcal {B}(\mathcal {H}_{2},\, \mathcal {H}_{1})}\) be given operators. A necessary and sufficient condition is given for \({\left(\begin{smallmatrix}A &\enspace C\\ X &\enspace B \end{smallmatrix}\right)}\) to be a right (left) invertible operator for some \({X \in \mathcal {B}(\mathcal {H}_{1},\, \mathcal {H}_{2})}\). Furthermore, some related results are obtained.
Details
- ISSN :
- 14208989 and 0378620X
- Volume :
- 67
- Database :
- OpenAIRE
- Journal :
- Integral Equations and Operator Theory
- Accession number :
- edsair.doi...........1ead5b230a3eb1940609b84e2abe9fb4