Back to Search Start Over

On the Right (Left) Invertible Completions for Operator Matrices

Authors :
Alatancang Chen
Guojun Hai
Source :
Integral Equations and Operator Theory. 67:79-93
Publication Year :
2010
Publisher :
Springer Science and Business Media LLC, 2010.

Abstract

Let \({\mathcal {H}_{1}}\) and \({\mathcal {H}_{2}}\) be separable Hilbert spaces, and let \({A \in \mathcal {B}(\mathcal {H}_{1}),\, B \in \mathcal {B}(\mathcal {H}_{2})}\) and \({C \in \mathcal {B}(\mathcal {H}_{2},\, \mathcal {H}_{1})}\) be given operators. A necessary and sufficient condition is given for \({\left(\begin{smallmatrix}A &\enspace C\\ X &\enspace B \end{smallmatrix}\right)}\) to be a right (left) invertible operator for some \({X \in \mathcal {B}(\mathcal {H}_{1},\, \mathcal {H}_{2})}\). Furthermore, some related results are obtained.

Details

ISSN :
14208989 and 0378620X
Volume :
67
Database :
OpenAIRE
Journal :
Integral Equations and Operator Theory
Accession number :
edsair.doi...........1ead5b230a3eb1940609b84e2abe9fb4