Back to Search Start Over

Applications of integrals

Authors :
Adi Ben-Israel
Robert P. Gilbert
Source :
Computer-Supported Calculus ISBN: 9783709172308
Publication Year :
2002
Publisher :
Springer Vienna, 2002.

Abstract

What do area, length, volume, work, and hydrostatic force have in common? All of these (and many other important concepts in science and engineering) can be modelled as Riemann sums (8.6) $$\sum\limits_{k = 1}^n {f\left( {{\xi _k}} \right)} {\rm{ }}\Delta {x_k},$$ and computed as integrals (8.28), $$\int\limits_{a}^{b} {f(x)dx: = \mathop{{\lim }}\limits_{{\parallel \mathcal{P}\parallel \to 0}} } \sum\limits_{{k = 1}}^{n} {f({{\xi }_{k}})\Delta {{x}_{k}}.}$$ In this chapter integrals are applied to problems of computing areas (Sects. 11.1, 11.2, and 11.6), arc lengths (Sect. 11.3), volumes (Sects. 11.4 and 11.5), moments and centroids (Sects. 11.7 and 11.8), work (Sect. 11.9), and hydrostatic force (Sect. 11.10).

Details

ISBN :
978-3-7091-7230-8
ISBNs :
9783709172308
Database :
OpenAIRE
Journal :
Computer-Supported Calculus ISBN: 9783709172308
Accession number :
edsair.doi...........1e89d4a7ba233066b86e82b15843c7db
Full Text :
https://doi.org/10.1007/978-3-7091-6146-3_11