Back to Search Start Over

Modeling and simulation of coordinated driving and braking control for fuel cell hybrid electric vehicle

Authors :
Jianqiu Li
Liangfei Xu
Li Jingkang
Hu Jiayi
Minggao Ouyang
Li Hang
Zunyan Hu
Source :
2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI).
Publication Year :
2020
Publisher :
IEEE, 2020.

Abstract

The fuel cell hybrid electric vehicle (FCHEV) is a new type of vehicle with the advantages of high efficiency and environmental protection. As the government and society pay more and more attention to environmental and energy issues, the development of FCHEV has entered an important stage. The control algorithm of FCHEV is a key technology of new energy vehicles and requires research. This research mainly focuses on the power system modeling and the longitudinal dynamics control and simulation of FCHEV. Based on the tire model, a new slip ratio estimation strategy was proposed. The target drive torque control algorithm and the anti-slip control algorithm adopt the feedforward control and Proportional-integral feedback control. The hydraulic braking force and the regenerative braking force were distributed to ensure that the motor exerts the maximum regenerative braking capability, while the braking force distribution meets the requirements of the ECE braking regulations. On the MATLAB/Simulink software platform, a FCHEV power system model and a coordinated driving and braking control model were established. Through simulations in different working conditions, this paper proved the performance of the new slip ratio estimation algorithm and the feasibility of the dynamics control algorithm.

Details

Database :
OpenAIRE
Journal :
2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)
Accession number :
edsair.doi...........1e62c870be7a364abfc452d5c1e90961