Back to Search Start Over

Exchange interactions and high-energy spin states inMn12-acetate

Authors :
Stefan T. Ochsenbein
Noboru Fukushima
Andreas Honecker
Andreas Sieber
H. U. Güdel
Grégory Chaboussant
Bruce Normand
Mark Murrie
Source :
Physical Review B. 70
Publication Year :
2004
Publisher :
American Physical Society (APS), 2004.

Abstract

We perform inelastic neutron scattering measurements on the molecular nanomagnet ${\mathrm{Mn}}_{12}$-acetate to measure the excitation spectrum up to $45\phantom{\rule{0.3em}{0ex}}\mathrm{meV}$ $(500\phantom{\rule{0.3em}{0ex}}\mathrm{K})$. We isolate magnetic excitations in two groups at $5--6.5\phantom{\rule{0.3em}{0ex}}\mathrm{meV}$ $(60--75\phantom{\rule{0.3em}{0ex}}\mathrm{K})$ and $8--10.5\phantom{\rule{0.3em}{0ex}}\mathrm{meV}$ $(95--120\phantom{\rule{0.3em}{0ex}}\mathrm{K})$, with higher levels appearing only at $27\phantom{\rule{0.3em}{0ex}}\mathrm{meV}\phantom{\rule{0.2em}{0ex}}(310\phantom{\rule{0.3em}{0ex}}\mathrm{K})$ and $31\phantom{\rule{0.3em}{0ex}}\mathrm{meV}\phantom{\rule{0.2em}{0ex}}(360\phantom{\rule{0.3em}{0ex}}\mathrm{K})$. From a detailed characterization of the transition peaks we show that all of the low-energy modes appear to be separate $S=9$ excitations above the $S=10$ ground state, with the peak at $27\phantom{\rule{0.3em}{0ex}}\mathrm{meV}\phantom{\rule{0.2em}{0ex}}(310\phantom{\rule{0.3em}{0ex}}\mathrm{K})$ corresponding to the first $S=11$ excitation. We consider a general model for the four exchange interaction parameters of the molecule. The static susceptibility is computed by high-temperature series expansion and the energy spectrum, matrix elements, and ground-state spin configuration by exact diagonalization. The theoretical results are matched with experimental observation by inclusion of cluster anisotropy parameters, revealing strong constraints on possible parameter sets. We conclude that only a model with dominant exchange couplings ${J}_{1}\ensuremath{\sim}{J}_{2}\ensuremath{\sim}5.5\phantom{\rule{0.3em}{0ex}}\mathrm{meV}\phantom{\rule{0.2em}{0ex}}(65\phantom{\rule{0.3em}{0ex}}\mathrm{K})$ and small couplings ${J}_{3}\ensuremath{\sim}{J}_{4}\ensuremath{\sim}0.6\phantom{\rule{0.3em}{0ex}}\mathrm{meV}\phantom{\rule{0.3em}{0ex}}(7\phantom{\rule{0.3em}{0ex}}\mathrm{K})$ is consistent with the experimental data.

Details

ISSN :
1550235X and 10980121
Volume :
70
Database :
OpenAIRE
Journal :
Physical Review B
Accession number :
edsair.doi...........1e01542c8a3cc13abc0fa1c496f54b8f
Full Text :
https://doi.org/10.1103/physrevb.70.104422