Back to Search Start Over

A High-Efficiency Hybrid Resonant Converter With Wide-Input Regulation for Photovoltaic Applications

Authors :
Xiaonan Zhao
Lanhua Zhang
Rachael Born
Jih-Sheng Lai
Source :
IEEE Transactions on Industrial Electronics. 64:3684-3695
Publication Year :
2017
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2017.

Abstract

A microconverter serves as a front-end dc–dc stage of a microinverter to convert the power from a photovoltaic module to a dc bus. These front-end microconverters require isolation, high-boost ratio, wide-input voltage regulation, and high efficiency. This paper introduces an isolated resonant converter with hybrid modes of operation to achieve wide-input regulation while still maintaining high efficiency. The proposed converter is designed as a series resonant converter with nominal-input voltage and operates under two additional modes: a boost converter with low-input voltage and a buck converter with high-input voltage. Unlike conventional resonant converters, this converter operates at discontinues conduction mode with a fixed frequency, simplifying the design and control. In addition, this converter can achieve zero-voltage switching (ZVS) and/or zero-current switching (ZCS) of the primary-side MOSFETs, ZVS and/or ZCS of the secondary-side MOSFETs, and ZCS of output diodes under all operating conditions. Experimental results using a 300-W prototype achieve a peak efficiency of 98.1% and a California Energy Commission efficiency of 97.6% including all auxiliary and control power at nominal-input voltage.

Details

ISSN :
15579948 and 02780046
Volume :
64
Database :
OpenAIRE
Journal :
IEEE Transactions on Industrial Electronics
Accession number :
edsair.doi...........1e013326be2951ad4e9490054f521ee0