Back to Search Start Over

The GGCMI Phase II experiment: global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0)

Authors :
James Franke
Christoph Müller
Joshua Elliott
Alex C. Ruane
Jonas Jagermeyr
Juraj Balkovic
Philippe Ciais
Marie Dury
Peter Falloon
Christian Folberth
Louis Francois
Tobias Hank
Munir Hoffmann
R. Cesar Izaurralde
Ingrid Jacquemin
Curtis Jones
Nikolay Khabarov
Marian Koch
Michelle Li
Wenfeng Liu
Stefan Olin
Meridel Phillips
Thomas A. M. Pugh
Ashwan Reddy
Xuhui Wang
Karina Williams
Florian Zabel
Elisabeth Moyer
Publication Year :
2019
Publisher :
Copernicus GmbH, 2019.

Abstract

Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase II experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase II experimental protocol and its simulation data archive. Twelve crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (``CTWN'') for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase II archive. For example, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that indicates yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions, but is largest in high-latitude regions where crops may be grown in the future.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........1d2ac5bf5576fa62550561d1ff951205
Full Text :
https://doi.org/10.5194/gmd-2019-237