Back to Search Start Over

Comparison of approaches towards ecotoxicity evaluation for the application of dredged sediment on soil

Authors :
Jana Vašíčková
Jan Lána
Milan Sáňka
Radim Vácha
Lucia Škulcová
Klára Komprdová
Lucie Šindelářová
Tereza Kalábová
Jakub Hofman
Michal Dymák
Pavel Čupr
Jan Priessnitz
Source :
Journal of Soils and Sediments. 13:906-915
Publication Year :
2013
Publisher :
Springer Science and Business Media LLC, 2013.

Abstract

The toxicity of 36 dredged sediments from the Czech Republic was investigated using a large battery of bioassays. The aim of this study was to investigate the feasibility of ecotoxicity testing in general and of individual bioassays more specific and to investigate how the results of bioassays are determined by the physicochemical properties of sediment samples and/or sediment contamination. In 2008 and 2010, 36 sediment samples were collected from rivers and ponds and from sediment heaps in different parts of the Czech Republic. Both their physicochemical properties and their levels of contamination with POPs and heavy metals were analyzed. The ecotoxicities of the sediments were evaluated using the four bioassays from the new Czech directive 257/2009 Coll. concerning the application of dredged sediments on agricultural land (Enchytraeus crypticus reproduction, Folsomia candida reproduction, Lactuca sativa root elongation, and potential ammonium oxidation). The results of the four directive bioassays were compared with the results of other soil bioassays (Caenorhabditis elegans mortality, Eisenia fetida avoidance and reproduction) and eluate bioassays (Daphnia magna immobilization, Pseudokirchneriella subcapitata growth inhibition test, and Vibrio fischeri luminescence). We demonstrate that the battery suggested in Czech directive 257/2009 Coll. is highly effective in identifying toxic samples; these bioassays clearly revealing different types of toxicity and different exposure routes. Shorter alternative bioassays may be added especially when fast toxicity identification is needed. Eluate bioassays identified samples potentially hazardous to aquatic ecosystems. Their inclusion into the assessment scheme should be considered if the goal of assessment is also the protection of aquatic ecosystems. The results of our multivariate analysis show that specific physicochemical properties and contamination may affect bioassay responses. C. elegans was the most sensitive bioassay to physicochemical properties and also to organic contamination, while eluate bioassays were sensitive to heavy metal pollution. Most effects detected by the bioassays could not be explained by the levels of toxicants measured or by the natural characteristics of sediments. Our results show that bioassays are irreplaceable in dredged sediment risk assessment because they complement information provided by chemical analyses.

Details

ISSN :
16147480 and 14390108
Volume :
13
Database :
OpenAIRE
Journal :
Journal of Soils and Sediments
Accession number :
edsair.doi...........1cf21a70b87fd4e71fd192dcd7d8d786
Full Text :
https://doi.org/10.1007/s11368-013-0670-x