Back to Search Start Over

Inferring a spatial code of cell-cell interactions across a whole animal body

Authors :
Eyleen J. O’Rourke
Erick Armingol
Nathan E. Lewis
Jason S. Chan
Chintan Joshi
Abbas Ghaddar
Hsuan-Lin Her
Isaac Shamie
Hratch M. Baghdassarian
Publication Year :
2020
Publisher :
Cold Spring Harbor Laboratory, 2020.

Abstract

Summary Cell-cell interactions shape cellular function and ultimately organismal phenotype. However, the spatial code embedded in the molecular interactions driving and sustaining spatial organization remains to be elucidated. Here we present a computational framework to infer the spatial code underlying cell-cell interactions in a whole animal. Using the transcriptomes of the cell types composing Caenorhabditis elegans’ body, we compute the potential for intercellular interactions from the coexpression of ligand-receptor pairs. Leveraging a 3D atlas of C. elegans’ cells and a genetic algorithm we identify the ligand-receptor pairs most informative of the spatial organization of cells. The resulting intercellular distances are negatively correlated with the potential for cell-cell interaction, validating this strategy. Further, for selected ligand-receptor pairs, we experimentally confirm the algorithm-generated cell-cell interactions. Thus, our computational framework helps identify a code associated with spatial organization and cellular functions across a whole-animal body, showing that single-cell molecular measurements provide spatial information that may help elucidate organismal phenotypes and disease. Highlights -A cell-cell interaction network in the whole body of C. elegans is presented. -Intercellular distance and interactions are negatively correlated. -A combination of ligand-receptor pairs carries a spatial code of cell-cell interactions. -Spatial expression of specific ligand-receptor pairs is validated in vivo. Graphical abstract

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........1c979519368db047af0c6e288449d1c7
Full Text :
https://doi.org/10.1101/2020.11.22.392217