Back to Search
Start Over
Cyclotrimerization of Acetylene under Thermal Conditions: Gas-Phase Kinetics of V+ and Fe+ + C2H2
- Source :
- The Journal of Physical Chemistry A. 125:9327-9337
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- The kinetics of successive reactions of acetylene (C2H2) initiated on either vanadium or iron atomic cations have been investigated under thermal conditions using the variable-ion source and temperature-adjustable selected-ion flow tube apparatus. Consistent with the literature results, the reaction of Fe+ + C2H2 primarily yields Fe+(m/z = (C2H2)3); however, analysis via quantum chemical calculations and statistical modeling shows that the mechanism does not form benzene upon the third acetylene addition. The kinetics are more consistent with successive addition of three acetylene molecules, yielding Fe+(C2H2)3, followed by an addition of a fourth acetylene molecule, initiating cyclotrimerization, yielding either Fe+(C2H2) + neutral benzene or Fe+(Bz) + acetylene, where Bz is a benzene ligand. In contrast, the reaction of V+ + C2H2 yields products via successive associations V+(m/z = (C2H2)n) either with or without a bimolecular step involving loss of one H2 and V+C2(m/z = (C2H2)m), where n and m extend at least up to 11 under conditions of 0.32 Torr at 300 K. Stabilized V+(Bz) is not a significant intermediate in the association mechanism. We propose a plausible mechanism for the generation of neutral benzene in this reaction and compare with the Fe+ results. The reaction steps that produce benzene result in turnover of the single-atom catalyst, and the large hydrocarbons produced that remain associated to the catalyst are proposed to be polycyclic aromatic hydrocarbons.
Details
- ISSN :
- 15205215 and 10895639
- Volume :
- 125
- Database :
- OpenAIRE
- Journal :
- The Journal of Physical Chemistry A
- Accession number :
- edsair.doi...........1c508728361d1440a47e7884ae99831b
- Full Text :
- https://doi.org/10.1021/acs.jpca.1c06439