Back to Search
Start Over
Dietary sodium induces a redistribution of the tubular metabolic workload
- Source :
- The Journal of Physiology. 595:6905-6922
- Publication Year :
- 2017
- Publisher :
- Wiley, 2017.
-
Abstract
- Na+ excretion by the kidney varies according to dietary Na+ intake. We undertook a systematic study on the effects of dietary salt intake on glomerular filtration rate (GFR) and tubular Na+ reabsorption. We examined the renal adaptive response in mice subjected to 7 days of a low sodium diet (LSD) containing 0.01% Na+, a normal sodium diet (NSD) containing 0.18% Na+, as well as a moderately high sodium diet (HSD) containing 1.25% Na+. As expected, LSD did not alter measured GFR and increased the abundance of total and cell-surface NHE3, NKCC2, NCC, α-ENaC, and cleaved γ-ENaC compared to NSD. Mathematical modelling predicted that tubular Na+ reabsorption increased in the proximal tubule but decreased in the distal nephron because of diminished Na+ delivery. This prediction was confirmed by the natriuretic response to diuretics targeting the thick ascending limb, the distal convoluted tubule or the collecting system. On the other hand, HSD did not alter measured GFR but decreased the abundance of the aforementioned transporters compared to NSD. Mathematical modelling predicted that tubular Na+ reabsorption decreased in the proximal tubule but increased in distal segments with lower transport efficiency with respect to O2 consumption. This prediction was confirmed by the natriuretic response to diuretics. The activity of the metabolic sensor AMPK was related to the changes in tubular Na+ reabsorption. Our data show that fractional Na+ reabsorption is distributed differently according to dietary Na+ intake and induces changes in tubular O2 consumption and sodium transport efficiency. This article is protected by copyright. All rights reserved
- Subjects :
- 0301 basic medicine
medicine.medical_specialty
Kidney
urogenital system
Physiology
Reabsorption
Sodium
food.diet
chemistry.chemical_element
Renal Reabsorption
Renal function
Low sodium diet
Excretion
03 medical and health sciences
030104 developmental biology
Endocrinology
medicine.anatomical_structure
food
chemistry
Internal medicine
medicine
Distal convoluted tubule
Subjects
Details
- ISSN :
- 00223751
- Volume :
- 595
- Database :
- OpenAIRE
- Journal :
- The Journal of Physiology
- Accession number :
- edsair.doi...........1bf1704e09d6ce7f6b859e0da41017c7