Back to Search
Start Over
Introducing time series chains: a new primitive for time series data mining
- Source :
- Knowledge and Information Systems. 60:1135-1161
- Publication Year :
- 2018
- Publisher :
- Springer Science and Business Media LLC, 2018.
-
Abstract
- Time series motifs were introduced in 2002 and have since become a fundamental tool for time series analytics, finding diverse uses in dozens of domains. In this work, we introduce Time Series Chains, which are related to, but distinct from, time series motifs. Informally, time series chains are a temporally ordered set of subsequence patterns, such that each pattern is similar to the pattern that preceded it, but the first and last patterns can be arbitrarily dissimilar. In the discrete space, this is similar to extracting the text chain “data, date, cate, cade, code” from text stream. The first and last words have nothing in common, yet they are connected by a chain of words with a small mutual difference. Time series chains can capture the evolution of systems, and help predict the future. As such, they potentially have implications for prognostics. In this work, we introduce two robust definitions of time series chains and scalable algorithms that allow us to discover them in massive complex datasets.
- Subjects :
- Theoretical computer science
Series (mathematics)
business.industry
Computer science
Discrete space
02 engineering and technology
Human-Computer Interaction
Chain (algebraic topology)
Artificial Intelligence
Hardware and Architecture
Analytics
020204 information systems
Time series data mining
Subsequence
0202 electrical engineering, electronic engineering, information engineering
Code (cryptography)
Prognostics
business
Software
Information Systems
Subjects
Details
- ISSN :
- 02193116 and 02191377
- Volume :
- 60
- Database :
- OpenAIRE
- Journal :
- Knowledge and Information Systems
- Accession number :
- edsair.doi...........1b710675b300275755178634ecf63bdd
- Full Text :
- https://doi.org/10.1007/s10115-018-1224-8