Back to Search Start Over

Cryo-ET Reveals Molecular Details of Multi-Megadalton Bacterial Protein Complexes

Authors :
Dutka, Przemysław
Publication Year :
2023
Publisher :
California Institute of Technology, 2023.

Abstract

Cryo-electron tomography (cryo-ET) is a powerful method for investigating the 3D structure of intact cells, organelles, and complex protein macromolecules that cannot be crystallized or are too heterogenous for single-particle cryo-electron microscopy (cryo-EM). However, obtaining high- resolution cryo-ET structures for many biologically important targets is still a challenge. To address this challenge, cryo-ET can be combined with other methods, including X-ray crystallography, single-particle cryo-EM, structure predictions, cross-linking mass spectrometry, biochemistry, and evolutionary analysis to produce integrative models. Recently, with the development of AI-based tools such as AlphaFold2, structure prediction has played an increasingly important role in integrative modeling. The combination of cryo-ET and structure prediction in particular has provided unprecedented insights into the ultrastructure of cellular components. This thesis focuses on two bacterial multi-megadalton protein complexes which are difficult to study by classical structural biology approaches: gas vesicles (GVs) and the Legionella pneumophila Dot/Icm type IV secretion system (T4SS). GVs are gas-filled protein nanostructures that regulate the position of certain microorganisms in water and consequently their access to sunlight and nutrients. Here, we investigate the mechanical properties of GVs and reveal the molecular structure of GVs and its implication for the assembly mechanism. The Dot/Icm T4SS is a macromolecular complex formed by approximately 27 proteins, utilized by L. pneumophila to hijack the host cell's biology for its replication purposes. A nearly-complete integrative model of this complex provides crucial insights into its structural organization and its evolution from conjugation to secretion, as well as the transportation of substrates into the host cell.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi...........1ad22d47203b300df1f4fc9b5037c632
Full Text :
https://doi.org/10.7907/87jm-7v06