Back to Search
Start Over
DNA double-strand breaks disrupted the spindle assembly in porcine oocytes
- Source :
- Molecular Reproduction and Development. 83:132-143
- Publication Year :
- 2015
- Publisher :
- Wiley, 2015.
-
Abstract
- We used etoposide (25-100 µg/mL) to induce DNA double-strand breaks (DSBs) in porcine oocytes at the germinal vesicle (GV) stage to determine how such damage affects oocyte maturation. We observed that DNA damage did not delay the rate of germinal vesicle breakdown (GVBD), but did inhibit the final stages of maturation, as indicated by the failure to extrude the first polar body. Oocytes with low levels of DSBs failed to effectively activate ataxia telangiectasia-mutated (ATM) kinase, while those with severe DNA DSBs failed to activate checkpoint kinase 1 (CHK1)--the two regulators of the DNA damage response pathway--indicating that porcine oocytes lack an efficient G2/M phase checkpoint. DSBs induced spindle defects and chromosomal misalignments, leading to the arrest of these oocytes at meiotic metaphase I. The activity of maturation-promoting factor also did not increase appropriately in oocytes with DNA DSBs, although its abundance was sufficient to promote GVBD and chromosomal condensation. Following parthenogenetic activation, embryos from etoposide-treated oocytes formed numerous micronuclei. Thus, our results indicate that DNA DSBs do not efficiently activate the ATM/CHK1-dependent DNA-damage checkpoint in porcine oocytes, allowing these DNA-impaired oocytes to enter M phase. Oocytes with DNA damage did, however, arrest at metaphase I in response to spindle defects and chromosomal misalignments, which limited the ability of these oocytes to reach meiotic metaphase II.
- Subjects :
- 0301 basic medicine
Cell cycle checkpoint
Germinal vesicle
DNA damage
Cell Biology
Biology
G2-M DNA damage checkpoint
Molecular biology
Cell biology
Spindle apparatus
03 medical and health sciences
030104 developmental biology
Genetics
CHEK1
biological phenomena, cell phenomena, and immunity
Metaphase
Meiotic metaphase II
Developmental Biology
Subjects
Details
- ISSN :
- 1040452X
- Volume :
- 83
- Database :
- OpenAIRE
- Journal :
- Molecular Reproduction and Development
- Accession number :
- edsair.doi...........1aa05186202f6d764169f3644233efe8
- Full Text :
- https://doi.org/10.1002/mrd.22602