Back to Search Start Over

n-Heptane hydroconversion over nickel-loaded aluminum- and/or boron-containing BEA zeolites prepared by recrystallization of magadiite varieties

Authors :
H.K. Beyer
R.M. Mihályi
Ferenc Lónyi
Gabriella Pál-Borbély
Ágnes Szegedi
József Valyon
Márton Kollár
Source :
Journal of Molecular Catalysis A: Chemical. 367:77-88
Publication Year :
2013
Publisher :
Elsevier BV, 2013.

Abstract

Phase-pure [Al]BEA and [Al,B]BEA zeolites, prepared by solid-state recrystallization of synthetic aluminum-containing magadiites and conventionally synthesized [B]BEA, were tested, after ion exchange with nickel, as bifunctional catalysts for hydroconversion of n-heptane. The reducibility of nickel ions incorporated into BEA zeolites by ion exchange was investigated by temperature-programmed reduction (TPR). The acidity of the samples was characterized with strong (pyridine (Py) and ammonia (NH 3 )) and weak (nitrogen) bases. The adsorbed bases were studied by transmission FT-IR (Py), diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy (N 2 ), and temperature-programmed ammonia evolution (TPAE, NH 3 ). Over Ni/H-[B]BEA the reactants were completely converted via fast hydrogenolysis, whereas this reaction pathway plays only a negligible role in the hydroconversion over Ni/H-[Al]BEA and Ni/H-[Al,B]BEA zeolites. Boron-containing BEA zeolites were less active catalysts than the boron-free catalyst in the principal unimolecular hydroconversion reactions. However, incorporation of boron into the framework of BEA zeolite results in a considerable selectivity shift toward isomerization. Results suggest that the acid strength of bridged hydroxyls, probed with weak (N 2 ) and strong basis (pyridine), was found to be similar in the boron-free and boron-containing BEA samples. The decrease in the isomerization rate and the increase of the apparent activation energy upon incorporation of boron may be attributed to the decrease in the heat of n-heptane adsorption.

Details

ISSN :
13811169
Volume :
367
Database :
OpenAIRE
Journal :
Journal of Molecular Catalysis A: Chemical
Accession number :
edsair.doi...........1a91ac01b965dddb5912e4ab7d9d9b90
Full Text :
https://doi.org/10.1016/j.molcata.2012.09.030