Back to Search
Start Over
Unstable dimension variability and codimension-one bifurcations of two-dimensional maps
- Source :
- Physics Letters A. 321:244-251
- Publication Year :
- 2004
- Publisher :
- Elsevier BV, 2004.
-
Abstract
- Unstable dimension variability is a mechanism whereby an invariant set of a dynamical system, like a chaotic attractor or a strange saddle, loses hyperbolicity in a severe way, with serious consequences on the shadowability properties of numerically generated trajectories. In dynamical systems possessing a variable parameter, this phenomenon can be triggered by the bifurcation of an unstable periodic orbit. This Letter aims at discussing the possible types of codimension-one bifurcations leading to unstable dimension variability in a two-dimensional map, presenting illustrative examples and displaying numerical evidences of this fact by computing finite-time Lyapunov exponents.
Details
- ISSN :
- 03759601
- Volume :
- 321
- Database :
- OpenAIRE
- Journal :
- Physics Letters A
- Accession number :
- edsair.doi...........199c8aec9596d348902fd3d352bea9a7
- Full Text :
- https://doi.org/10.1016/j.physleta.2003.12.049