Back to Search Start Over

Unstable dimension variability and codimension-one bifurcations of two-dimensional maps

Authors :
Ricardo L. Viana
Celso Grebogi
Jose Renato Ramos Barbosa
Source :
Physics Letters A. 321:244-251
Publication Year :
2004
Publisher :
Elsevier BV, 2004.

Abstract

Unstable dimension variability is a mechanism whereby an invariant set of a dynamical system, like a chaotic attractor or a strange saddle, loses hyperbolicity in a severe way, with serious consequences on the shadowability properties of numerically generated trajectories. In dynamical systems possessing a variable parameter, this phenomenon can be triggered by the bifurcation of an unstable periodic orbit. This Letter aims at discussing the possible types of codimension-one bifurcations leading to unstable dimension variability in a two-dimensional map, presenting illustrative examples and displaying numerical evidences of this fact by computing finite-time Lyapunov exponents.

Details

ISSN :
03759601
Volume :
321
Database :
OpenAIRE
Journal :
Physics Letters A
Accession number :
edsair.doi...........199c8aec9596d348902fd3d352bea9a7
Full Text :
https://doi.org/10.1016/j.physleta.2003.12.049