Back to Search
Start Over
Indicators of tropical forest resilience in vegetation models
- Publication Year :
- 2023
- Publisher :
- Copernicus GmbH, 2023.
-
Abstract
- The resilience of tropical forests against climate change and deforestation is vital for biodiversity and carbon drawdown. This resilience is hard to measure directly, but is suspected to be decreasing. There is particular concern that the Amazon rainforest may be approaching a “tipping point” where the large-scale loss of species and carbon pools amplifies substantially. Candidate mechanisms for such threshold effects often involve positive feedbacks and span a large range of scales. For example, individual trees can die from hydraulic failure when soil moisture decreaseses, forest fires can mediate a regional transition to a savanna state, and by synchronising remote regions, the moisture recycling feedback could cause a continental-scale forest dieback. Conceptual dynamical systems suggest that the loss of resilience that accompanies such transitions can be measured by statistical indicators like increasing autocorrelation. Satellite observations of vegetation indices related to greenness and biomass seem to support these theoretical expectations.Here we analyse dynamic global vegetation models (DGVMs) from CMIP6, as well as idealised simulations with LPJ, in order to bridge the complexity gap between conceptual models and the real world. First, we assess how resilience of terrestrial carbon pools in the tropics depends on mean annual rainfall (MAP). We find that this relationship differs between models, and can also differ substantially from the observed positive relationship, depending on how the models capture carbon pool dynamics on the grid-cell level. Second, we show that changes in resilience do not necessarily require any atmosphere-vegetation feedbacks, fire feedback or ecological interactions, suggesting that observed relationships may capture physiological effects in individual trees rather than the stability of the entire forest. Third, we also find that the coexistence of vegetation types affects vegetation resilience in DGVMs. In particular, plant types with faster dynamics can replace slower ones (e.g., grass replacing trees), leading to decreased autocorrelation but not necessarily larger sensitivity to MAP. We conclude that suitable indicators of tropical vegetation resilience should be determined by (i) using DGVMs to understand better what mechanisms are at play, and (ii) using observations to rule out certain model approaches (e.g. area-averaged versus individual-based models).
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........190afc7191886a4fc52b81b1d24beb1a
- Full Text :
- https://doi.org/10.5194/egusphere-egu23-9297