Back to Search Start Over

Quality control for modern bone collagen stable carbon and nitrogen isotope measurements

Authors :
Eric J. Guiry
Paul Szpak
Source :
Methods in Ecology and Evolution. 11:1049-1060
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society Isotopic analyses of collagen, the main protein preserved in subfossil bone and tooth, has long provided a powerful tool for the reconstruction of ancient diets and environments. Although isotopic studies of contemporary ecosystems have typically focused on more accessible tissues (e.g. muscle, hair), there is growing interest in the potential for analyses of collagen because it is often available in hard tissue archives (e.g. scales, skin, bone, tooth), allowing for enhanced long-term retrospective studies. The quality of measurements of the stable carbon and nitrogen isotopic compositions of ancient samples is subject to robust and well-established criteria for detection of contaminants and diagenesis. Among these quality control (QC) criteria, the most widely utilized is the atomic C:N ratio (C:NAtomic), which for ancient samples has an acceptable range between 2.9 and 3.6. While this QC criterion was developed for ancient materials, it has increasingly being applied to collagen from modern tissues. Here, we use a large survey of published collagen amino acid compositions (n = 436) from 193 vertebrate species as well as recent experimental isotopic evidence from 413 modern collagen extracts to demonstrate that the C:NAtomic range used for ancient samples is not suitable for assessing collagen quality of modern and archived historical samples. For modern tissues, collagen C:NAtomic falling outside 3.00–3.30 for fish and 3.00–3.28 for mammals and birds can produce systematically skewed isotopic compositions and may lead to significant interpretative errors. These findings are followed by a review of protocols for improving C:NAtomic criteria for modern collagen extracts. Given the tremendous conservation and environmental policy-informing potential that retrospective isotopic analyses of collagen from contemporary and archived vertebrate tissues have for addressing pressing questions about long-term environmental conditions and species behaviours, it is critical that QC criteria tailored to modern tissues are established.

Details

ISSN :
2041210X
Volume :
11
Database :
OpenAIRE
Journal :
Methods in Ecology and Evolution
Accession number :
edsair.doi...........189054e6ad917817cb580e8046f18557