Back to Search Start Over

Inferring structural variant cancer cell fraction

Authors :
Cmero, Marek
Yuan, Ke
Ong, Cheng Soon
Schröder, Jan
Corcoran, Niall M.
Papenfuss, Tony
Hovens, Christopher M.
Markowetz, Florian
Macintyre, Geoff
Adams, David J.
Anur, Pavana
Beroukhim, Rameen
Boutros, Paul C.
Bowtell, David D. L.
Campbell, Peter J.
Cao, Shaolong
Christie, Elizabeth L.
Cun, Yupeng
Dawson, Kevin J.
Demeulemeester, Jonas
Dentro, Stefan C.
Deshwar, Amit G.
Donmez, Nilgun
Drews, Ruben M.
Eils, Roland
Fan, Yu
Fittall, Matthew W.
Garsed, Dale W.
Gerstung, Moritz
Getz, Gad
Gonzalez, Santiago
Ha, Gavin
Haase, Kerstin
Imielinski, Marcin
Jerman, Lara
Ji, Yuan
Jolly, Clemency
Kleinheinz, Kortine
Lee, Juhee
Lee-Six, Henry
Leshchiner, Ignaty
Livitz, Dimitri
Malikic, Salem
Martincorena, Iñigo
Mitchell, Thomas J.
Morris, Quaid D.
Mustonen, Ville
Oesper, Layla
Peifer, Martin
Peto, Myron
Raphael, Benjamin J.
Rosebrock, Daniel
Rubanova, Yulia
Sahinalp, S. Cenk
Salcedo, Adriana
Schlesner, Matthias
Schumacher, Steven E.
Sengupta, Subhajit
Shi, Ruian
Shin, Seung Jun
Spellman, Paul T.
Spiro, Oliver
Stein, Lincoln D.
Tarabichi, Maxime
Van Loo, Peter
Vembu, Shankar
Vázquez-García, Ignacio
Wang, Wenyi
Wedge, David C.
Wheeler, David A.
Wintersinger, Jeffrey A.
Yang, Tsun-Po
Yao, Xiaotong
Yu, Kaixian
Zhu, Hongtu
Publisher :
Apollo - University of Cambridge Repository

Abstract

We present SVclone, a computational method for inferring the cancer cell fraction of structural variant (SV) breakpoints from whole-genome sequencing data. SVclone accurately determines the variant allele frequencies of both SV breakends, then simultaneously estimates the cancer cell fraction and SV copy number. We assess performance using in silico mixtures of real samples, at known proportions, created from two clonal metastases from the same patient. We find that SVclone’s performance is comparable to single-nucleotide variant-based methods, despite having an order of magnitude fewer data points. As part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we use SVclone to reveal a subset of liver, ovarian and pancreatic cancers with subclonally enriched copy-number neutral rearrangements that show decreased overall survival. SVclone enables improved characterisation of SV intra-tumour heterogeneity.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........183d187d6898567b323baf5147904cfe