Back to Search Start Over

Multiscale simulation and kinetic network model analysis of the self-assembly of amphiphilic systems

Authors :
Xiaoyan Zheng
Zhan-Wei Li
Xiangze Zeng
Source :
SCIENTIA SINICA Chimica. 50:1118-1131
Publication Year :
2020
Publisher :
Science China Press., Co. Ltd., 2020.

Abstract

Amphiphilic building blocks play an important role in fabricating nanomaterials. To achieve the precise control of self-assembled nanostructures, it is important to understand the self-assembly process at both microscopic and mesoscopic scale. Multiscale simulations could simulate the self-assembly process in both microscopic and mesoscopic scale, and get the metastable and equilibrium assembled structures and the corresponding trajectories. Based on these trajectories, we can further build the kinetic network model and obtain the kinetic transition pathway of the self-assembly process. This approach provides the theoretical principles for designing novel self-assembly building blocks and achieving novel self-assembled structures. In this article, we review our recent progress on the study of mechanisms of self-assembly of amphiphilic building blocks, such as small organic molecules, block copolymers and patchy particles by combining multiscale simulation and kinetic network model analysis.

Details

ISSN :
16747224
Volume :
50
Database :
OpenAIRE
Journal :
SCIENTIA SINICA Chimica
Accession number :
edsair.doi...........17ffab29f821f6c085a918daedf1d89f
Full Text :
https://doi.org/10.1360/ssc-2020-0082