Back to Search Start Over

Involutive symmetric Gödel spaces, their algebraic duals and logic

Authors :
A. Di Nola
R. Grigolia
G. Vitale
Source :
Archive for Mathematical Logic. 62:789-809
Publication Year :
2023
Publisher :
Springer Science and Business Media LLC, 2023.

Abstract

It is introduced a new algebra $$(A, \otimes , \oplus , *, \rightharpoonup , 0, 1)$$ ( A , ⊗ , ⊕ , ∗ , ⇀ , 0 , 1 ) called $$L_PG$$ L P G -algebra if $$(A, \otimes , \oplus , *, 0, 1)$$ ( A , ⊗ , ⊕ , ∗ , 0 , 1 ) is $$L_P$$ L P -algebra (i.e. an algebra from the variety generated by perfect MV-algebras) and $$(A,\rightharpoonup , 0, 1)$$ ( A , ⇀ , 0 , 1 ) is a Gödel algebra (i.e. Heyting algebra satisfying the identity $$(x \rightharpoonup y ) \vee (y \rightharpoonup x ) =1)$$ ( x ⇀ y ) ∨ ( y ⇀ x ) = 1 ) . The lattice of congruences of an $$L_PG$$ L P G -algebra $$(A, \otimes , \oplus , *, \rightharpoonup , 0, 1)$$ ( A , ⊗ , ⊕ , ∗ , ⇀ , 0 , 1 ) is isomorphic to the lattice of Skolem filters (i.e. special type of MV-filters) of the MV-algebra $$(A, \otimes , \oplus , *, 0, 1)$$ ( A , ⊗ , ⊕ , ∗ , 0 , 1 ) . The variety $$\mathbf {L_PG}$$ L P G of $$L_PG$$ L P G -algebras is generated by the algebras $$(C, \otimes , \oplus , *, \rightharpoonup , 0, 1)$$ ( C , ⊗ , ⊕ , ∗ , ⇀ , 0 , 1 ) where $$(C, \otimes , \oplus , *, 0, 1)$$ ( C , ⊗ , ⊕ , ∗ , 0 , 1 ) is Chang MV-algebra. Any $$L_PG$$ L P G -algebra is bi-Heyting algebra. The set of theorems of the logic $$L_PG$$ L P G is recursively enumerable. Moreover, we describe finitely generated free $$L_PG$$ L P G -algebras.

Subjects

Subjects :
Philosophy
Logic

Details

ISSN :
14320665 and 09335846
Volume :
62
Database :
OpenAIRE
Journal :
Archive for Mathematical Logic
Accession number :
edsair.doi...........17c9212357859d5fcc6d9510b2b0639a
Full Text :
https://doi.org/10.1007/s00153-023-00866-6