Back to Search Start Over

Fast and Accurate SimRank Computation via Forward Local Push and its Parallelization

Authors :
Yue Wang
Xiang Lian
Qiong Luo
Yulin Che
Lei Chen
Source :
IEEE Transactions on Knowledge and Data Engineering. 33:3686-3700
Publication Year :
2021
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2021.

Abstract

Measuring similarity among data objects is important in data analysis and mining. SimRank is a popular link-based similarity measurement among nodes in a graph. To compute the all-pairs SimRank matrix accurately, iterative methods are usually used. For static graphs, current iterative solutions are not efficient enough, both in time and space, due to the unnecessary cost and storage by the nature of iterative updating. For dynamic graphs, all current incremental solutions for updating the SimRank matrix are based on an approximated SimRank definition, and thus have no accuracy guarantee. In this paper, we propose a novel local push based algorithm for computing and tracking all-pairs SimRank. Furthermore, we develop an iterative parallel two-step framework for local push to take advantage of modern hardwares with multicore CPUs. We show that our algorithms outperform the state-of-the-art methods.

Details

ISSN :
23263865 and 10414347
Volume :
33
Database :
OpenAIRE
Journal :
IEEE Transactions on Knowledge and Data Engineering
Accession number :
edsair.doi...........17b50f4f08c8e4381744f0267468af7a