Back to Search Start Over

Highly Periodic Metal Dichalcogenide Nanostructures with Complex Shapes, High Resolution, and High Aspect Ratios

Authors :
Soo-Yeon Cho
Doo Hyung Jang
Hyeong-Jun Koh
Hannes Jung
Seon Joon Kim
Sungwoo Jang
Source :
Advanced Functional Materials. 27:1703842
Publication Year :
2017
Publisher :
Wiley, 2017.

Abstract

The development of high resolution, high aspect ratio metal dichalcogenide nanostructures is one of the most important issues in 2D material researchers due to the potential to exploit their properties into high performance devices. In this study, for the first time a way of fabricating metal dichalcogenide nanostructures with high resolution ( 120) by chemical vapor deposition assisted secondary sputtering phenomenon is reported. This approach can universally synthesize various types of metal dichalcogenides including MoS2, WS2, and SnS2, implying the possibility for further utilization with selenides and tellurides. Also, this method can produce highly periodic complex patterns such as hole–cylinder, concentric rings, and line patterns, which are unprecedented in previous reports. The feature size and aspect ratio of the metal dichalcogenide structures can be manipulated by controlling the dimensions of the photoresist prepatterns, while the pattern resolution and layer orientation can be manipulated by controlling the thickness of the deposited metal film. It is demonstrated that nanostructures with high resolution and high aspect ratio significantly improve gas-sensing properties compared with previous metal dichalcogenide films. It is believed that the method can be a foundation for synthesizing various materials with complex patterns for future applications.

Details

ISSN :
1616301X
Volume :
27
Database :
OpenAIRE
Journal :
Advanced Functional Materials
Accession number :
edsair.doi...........17401fe5722ce090e1c04cf7383be0cb
Full Text :
https://doi.org/10.1002/adfm.201703842