Back to Search Start Over

Effect of tillage intensity on N mineralization of different crop residues in a temperate climate

Authors :
Sara De Bolle
Georges Hofman
Stefaan De Neve
Annemie Van den Bossche
Source :
Soil and Tillage Research. 103:316-324
Publication Year :
2009
Publisher :
Elsevier BV, 2009.

Abstract

To evaluate the effect of tillage intensity on the N mineralization pattern of winter wheat residues, sugar beet residues, Italian ryegrass and maize residues undisturbed soil samples were taken from six sites under different tillage management. Site NTK had been managed for 10 years under reduced tillage (RT), whereby the last 4 years the crops were sown using direct seeding (NT). Site RTCSE had been managed for 20 years under reduced tillage (RT) and site RTH for 3 years. For each site under RT a nearby site under conventional tillage (CT) was selected (CTK, CTCSE and CTH). On site NTK and site RTCSE a significantly higher amount of SOC in the 0–10 cm was accumulated compared to the respective CT sites. Between site RTH and site CTH no such significant difference was found. However, the content of microbial biomass C (MB-C) and the β-glucosidase and urease activities were higher on all RT sites compared to the respective CT sites. This indicates that these microbiological and biochemical parameters seem to be very sensitive for alterations in management intensity. After 98 days, more N was immobilized under NTK than under CTK by adding winter wheat residues (expressed as kg ha−1 and as % of total added N). This higher immobilization potential can be explained by a higher microbial activity and a change in microbial population. Under RTCSE and RTH net N immobilization of the winter wheat residues was found, but the pattern was less pronounced than for NTK. However, when expressed as % of total N added, N immobilization of winter wheat residues was higher under CT than under RT, which indicates that high C:N residues when incorporated, decompose more slowly under RT than under CT. Similar results were found comparing the N mineralization pattern of maize residues under RTH and CTH. The residues of sugar beet and Italian ryegrass at site CTH released N more rapidly and to a higher extent, 74.1% and 66.2%, respectively (expressed as % of total N added) than under RTH at the end of the incubation. The slower mineralization of N rich crop residues under RT compared to CT means that there is less potential risk for nitrate leaching to occur, which may result in a higher N efficiency in RT compared to CT.

Details

ISSN :
01671987
Volume :
103
Database :
OpenAIRE
Journal :
Soil and Tillage Research
Accession number :
edsair.doi...........172deaecf74656729514785eeef30d8d