Back to Search
Start Over
Commutator identity involving generalized derivations on multilinear polynomials
- Source :
- ANNALI DELL'UNIVERSITA' DI FERRARA. 62:205-216
- Publication Year :
- 2016
- Publisher :
- Springer Science and Business Media LLC, 2016.
-
Abstract
- Let R be a prime ring of characteristic different from 2 with Utumi quotient ring U, C be the extended centroid of \(R,\, F\) and G be two nonzero generalized derivations of R and \(f(x_1,\ldots ,x_n)\) be a multilinear polynomial over C which is not central valued on R. If $$\begin{aligned} {[}F(u)u, G(v)v]=0 \end{aligned}$$ for all \(u,v\in f(R)\), then there exist \(a,b\in U\) such that \(F(x)=ax\) and \(G(x)=bx\) for all \(x\in R\) with \([a, b]=0\) and \(f(x_1,\ldots ,x_n)^2\) is central valued on R.
- Subjects :
- Discrete mathematics
Multilinear map
General Mathematics
010102 general mathematics
Commutator (electric)
Multilinear polynomial
010103 numerical & computational mathematics
Algebraic geometry
01 natural sciences
law.invention
Identity (mathematics)
law
Prime ring
0101 mathematics
Quotient ring
Mathematics
Subjects
Details
- ISSN :
- 18271510 and 04303202
- Volume :
- 62
- Database :
- OpenAIRE
- Journal :
- ANNALI DELL'UNIVERSITA' DI FERRARA
- Accession number :
- edsair.doi...........1705818d7d44e274609298e4cff9e816
- Full Text :
- https://doi.org/10.1007/s11565-016-0255-x