Back to Search Start Over

Commutator identity involving generalized derivations on multilinear polynomials

Authors :
Nadeem ur Rehman
Basudeb Dhara
Mohd Arif Raza
Source :
ANNALI DELL'UNIVERSITA' DI FERRARA. 62:205-216
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

Let R be a prime ring of characteristic different from 2 with Utumi quotient ring U, C be the extended centroid of \(R,\, F\) and G be two nonzero generalized derivations of R and \(f(x_1,\ldots ,x_n)\) be a multilinear polynomial over C which is not central valued on R. If $$\begin{aligned} {[}F(u)u, G(v)v]=0 \end{aligned}$$ for all \(u,v\in f(R)\), then there exist \(a,b\in U\) such that \(F(x)=ax\) and \(G(x)=bx\) for all \(x\in R\) with \([a, b]=0\) and \(f(x_1,\ldots ,x_n)^2\) is central valued on R.

Details

ISSN :
18271510 and 04303202
Volume :
62
Database :
OpenAIRE
Journal :
ANNALI DELL'UNIVERSITA' DI FERRARA
Accession number :
edsair.doi...........1705818d7d44e274609298e4cff9e816
Full Text :
https://doi.org/10.1007/s11565-016-0255-x