Back to Search Start Over

Thermal, Structural, and Enhanced Photoluminescence Properties of Eu3+ -doped Transparent Willemite Glass-Ceramic Nanocomposites

Authors :
Basudeb Karmakar
Chirantan Dey
Atiar Rahaman Molla
Anal Tarafder
Source :
Journal of the American Ceramic Society. 96:2424-2431
Publication Year :
2013
Publisher :
Wiley, 2013.

Abstract

The precursor glass in the ZnO–Al2O3–B2O3–SiO2 (ZABS) system doped with Eu2O3 was prepared by the melt-quench technique. The transparent willemite, Zn2SiO4 (ZS) glass–ceramic nanocomposites were derived from this precursor glass by a controlled crystallization process. The formation of willemite crystal phase, size, and morphology with increase in heat-treatment time was examined by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM) techniques. The average calculated crystallite size obtained from XRD is found to be in the range 18–70 nm whereas the grain size observed in FESEM is 50–250 nm. The refractive index value is decreased with increase in heat-treatment time which is caused by the partial replacement of ZnO4 units of ZS nanocrystals by AlO4 units due to generation of vacancies. Fourier transform infrared (FTIR) reflection spectroscopy was used to evaluate its structural evolution. Vickers hardness study indicates marked improvement of hardness in the resultant glass-ceramics compared with its precursor glass. The photoluminescence spectra of Eu3+ ions exhibit emission transitions of 5D0→7Fj (j = 0, 1, 2, 3, and 4) and its excitation spectra show an intense absorption band at 395 nm. These spectra reveal that the luminescence performance of the glass–ceramic nanocomposites is enhanced up to 17-fold with the process of heat treatment. This enhancement is caused by partitioning of Eu3+ ions into glassy phase instead of into the willemite crystals with progress of heat treatment. Such luminescent glass–ceramic nanocomposites are expected to find potential applications in solid-state red lasers, phosphors, and optical display systems.

Details

ISSN :
00027820
Volume :
96
Database :
OpenAIRE
Journal :
Journal of the American Ceramic Society
Accession number :
edsair.doi...........16f299d864eb25de5e759a1f01e79296