Back to Search Start Over

Yeast FIT2 homolog is necessary to maintain cellular proteostasis and membrane lipid homeostasis

Authors :
Peter Shyu
Stephen A. Jesch
William A. Prinz
Susan A. Henry
Charlie Marvalim
Wei Sheng Yap
Maria L. Gaspar
Guillaume Thibault
Source :
Journal of Cell Science.
Publication Year :
2020
Publisher :
The Company of Biologists, 2020.

Abstract

Lipid droplets (LDs) are implicated in conditions of lipid and protein dysregulation. The fat storage inducing transmembrane (FIT) family induces LD formation. Here, we establish a model system to study the role of S. cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in proteostasis and stress response pathways. While LD biogenesis and basal endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1. Devoid of a functional UPR, muted SCS3 exhibited accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting a UPR-dependent compensatory mechanism. Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, global protein ubiquitination and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFITΔ cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Together, our data support a model where ScFITs play an important role in lipid metabolism and proteostasis beyond their defined roles in LD biogenesis.

Details

ISSN :
14779137 and 00219533
Database :
OpenAIRE
Journal :
Journal of Cell Science
Accession number :
edsair.doi...........16b5826d9e9274fd7bfa0913d7484769
Full Text :
https://doi.org/10.1242/jcs.248526