Back to Search Start Over

The long-term stability of a possible aqueous ammonium sulfate ocean inside Titan

Authors :
Daniel Feltham
Peter Grindrod
Lidunka Vočadlo
Francis Nimmo
John P. Brodholt
Andrew Dominic Fortes
Source :
Icarus. 197:137-151
Publication Year :
2008
Publisher :
Elsevier BV, 2008.

Abstract

We model the thermal evolution of a subsurface ocean of aqueous ammonium sulfate inside Titan using a parameterized convection scheme. The cooling and crystallization of such an ocean depends on its heat flux balance, and is governed by the pressure-dependent melting temperatures at the top and bottom of the ocean. Using recent observations and previous experimental data, we present a nominal model which predicts the thickness of the ocean throughout the evolution of Titan; after 4.5 Ga we expect an aqueous ammonium sulfate ocean 56 km thick, overlain by a thick (176 km) heterogeneous crust of methane clathrate, ice I and ammonium sulfate. Underplating of the crust by ice I will give rise to compositional diapirs that are capable of rising through the crust and providing a mechanism for cryovolcanism at the surface. We have conducted a parameter space survey to account for possible variations in the nominal model, and find that for a wide range of plausible conditions, an ocean of aqueous ammonium sulfate can survive to the present day, which is consistent with the recent observations of Titan's spin state from Cassini radar data [Lorenz, R.D., Stiles, B.W., Kirk, R.L., Allison, M.D., del Marmo, P.P., Iess, L., Lunine, J.I., Ostro, S.J., Hensley, S., 2008. Science 319, 1649–1651].

Details

ISSN :
00191035
Volume :
197
Database :
OpenAIRE
Journal :
Icarus
Accession number :
edsair.doi...........15d496b0155aa0f3b2258f9b58b0943e
Full Text :
https://doi.org/10.1016/j.icarus.2008.04.006