Back to Search
Start Over
Experimental Investigation on Enhanced-Oil-Recovery Mechanisms of Using Supercritical Carbon Dioxide as Prefracturing Energized Fluid in Tight Oil Reservoir
- Source :
- SPE Journal. 26:3300-3315
- Publication Year :
- 2021
- Publisher :
- Society of Petroleum Engineers (SPE), 2021.
-
Abstract
- SummaryFracturing is the necessary means of tight oil development, and the most common fracturing fluid is slickwater. However, the Loess Plateau of the Ordos Basin in China is seriously short of water resources. Therefore, the tight oil development in this area by hydraulic fracturing is extremely costly and environmentally unfriendly. In this paper, a new method using supercritical carbon dioxide (CO2) (ScCO2) as the prefracturing energized fluid is applied in hydraulic fracturing. This method can give full play to the dual advantages of ScCO2 characteristics and mixed-water fracturing technology while saving water resources at the same time. On the other hand, this method can reduce reservoir damage, change rock microstructure, and significantly increase oil production, which is a development method with broad application potential.In this work, the main mechanism, the system-energy enhancement, and flowback efficiency of ScCO2 as the prefracturing energized fluid were investigated. First, the microscopic mechanism of ScCO2 was studied, and the effects of ScCO2 on pores and rock minerals were analyzed by nuclear-magnetic-resonance (NMR) test, X-ray-diffraction (XRD) analysis, and scanning-electron-microscope (SEM) experiments. Second, the high-pressure chamber-reaction experiment was conducted to study the interaction mechanism between ScCO2 and live oil under formation conditions, and quantitively describe the change of high-pressure physical properties of live oil after ScCO2 injection. Then, the numerical-simulation method was applied to analyze the distribution and existence state of ScCO2, as well as the changes of live-oil density, viscosity, and composition in different stages during the full-cycle fracturing process. Finally, four injection modes of ScCO2-injection core-laboratory experiments were designed to compare the performance of ScCO2 and slickwater in terms of energy enhancement and flowback efficiency, then optimize the optimal CO2-injection mode and the optimal injection amount of CO2 slug.The results show that ScCO2 can dissolve calcite and clay minerals (illite and chlorite) to generate pores with sizes in the range of 0.1 to 10 µm, which is the main reason for the porosity and permeability increases. Besides, the generated secondary clay minerals and dispersion of previously cemented rock particles will block the pores. ScCO2 injection increases the saturation pressure, expansion coefficient, volume coefficient, density, and compressibility of crude oil, which are the main mechanisms of energy increase and oil-production enhancement. After analyzing the four different injection-mode tests, the optimal one is to first inject CO2 and then inject slickwater. The CO2 slug has the optimal value, which is 0.5 pore volume (PV) in this paper.In this paper, the main mechanisms of using ScCO2 as the prefracturing energized fluid are illuminated. Experimental studies have proved the pressure increase, production enhancement, and flowback potential of CO2 prefracturing. The application of this method is of great significance to the protection of water resources and the improvement of the fracturing effect.
- Subjects :
- Supercritical carbon dioxide
020401 chemical engineering
Chemical engineering
Tight oil
Energy Engineering and Power Technology
Environmental science
02 engineering and technology
Enhanced oil recovery
0204 chemical engineering
010502 geochemistry & geophysics
Geotechnical Engineering and Engineering Geology
01 natural sciences
0105 earth and related environmental sciences
Subjects
Details
- ISSN :
- 19300220 and 1086055X
- Volume :
- 26
- Database :
- OpenAIRE
- Journal :
- SPE Journal
- Accession number :
- edsair.doi...........1578688942e6856dc7ece6edf956be4e
- Full Text :
- https://doi.org/10.2118/202279-pa