Back to Search Start Over

Charged Domain Wall and Polar Vortex Topologies in a Room Temperature Magnetoelectric Multiferroic Thin Film

Authors :
Kalani Moore
Eoghan O'Connell
Sinéad M. Griffin
Clive Downing
Louise Colfer
Michael Schmidt
Valeria Nicolosi
Ursel Bangert
Lynette Keeney
Michele Conroy
Publication Year :
2021
Publisher :
Research Square Platform LLC, 2021.

Abstract

Multiferroic topologies are an emerging solution for future low-power magnetic nanoelectronics due to their combined tuneable functionality and mobility. Here, we show that in addition to being magnetoelectric multiferroic at room temperature, thin film Aurivillius phase Bi6TixFeyMnzO18 is an ideal material platform for both domain wall and vortex topology based nanoelectronic devices. Utilising atomic resolution electron microscopy, we reveal the presence and structure of 180˚ type charged head-to-head and tail-to-tail domain walls passing throughout the thin film. Theoretical calculations confirm the sub-unit cell cation site preference and charged domain wall energetics for Bi6TixFeyMnzO18. Finally, we show that polar vortex type topologies also form at out-of-phase boundaries of stacking faults when internal strain and electrostatic energy gradients are altered. This study could pave the way for controlled polar vortex topology formation via strain engineering in other multiferroic thin films. Moreover, these results confirm the sub-unit-cell topological features play an important role in controlling the charge and spin state of Aurivillius phase films and other multiferroic heterostructures.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........15692353104ab90793136975b89b71e3
Full Text :
https://doi.org/10.21203/rs.3.rs-114541/v3